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Overview
•We use a Generative Adversarial Network (GAN) to generate realis-

tic explanations using Activation-Maximisation (AM) [1]. We validate
our method on a vocal classifier, showing it can retrieve the concept of
singing voice presence encoded in the output layer neuron.

•We also propose Fréchet Inception Distance (FID) [2] as a quantitative
measure for estimating the interpretability of a set of generated examples.
We demonstrate the effectiveness of FID in automatically evaluating the
interpretability of a set of generated explanations.

GAN-based Activation Maximisation
•AM synthesizes examples (e.g., images) that maximally activate different

components (neurons, layers) of a deep neural network (DNN).
•To generate visually interpretable examples, AM uses regularisers that

restrict the search space to realistic examples.
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•Our method uses a GAN as a regulariser that imposes a strong prior. The
method optimises
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Quantitative Selection of Explanations
•Present methods for selecting optimal AM hyper-parameters rely on vi-

sual interpretability of generated examples [3], but this is time-intensive
and does not scale well.

•We propose Fréchet Inception Distance (FID) as a metric for efficiently
evaluating the interpretability of a set of generated explanations.

•We posit that good interpretability requires the generated examples to
have a similar distribution of classifier responses f

a

(·) as the N samples
with the highest response from the dataset (p̂

x

).
•We select hyper-parameters that minimise FID between the dataset and

the generated response distributions.

Experiments
•Classifier- State-of-the-art audio classification model that classifies a

time-frequency representation of an audio excerpt to the “vocal” or “non-
vocal” class. The model is an 8-layer deep variant of VGG-Net with a
single sigmoidal neuron in the output layer.

•GAN training
– Generator noise distribution p

z

(z) = N (z|0
n

; I
n

), where n = 128

– Generator and discriminator architectures are variants of DCGAN
•AM optimisation

– Learning rate l

r

2 {0.1, 0.01, 0.001}, prior weight � 2
{0.1, 0.01, 0.001}, number of iterations N

t

2 {100, 500, 1000}, number
of examples per hyper-parameter configuration N = 50
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(a) Hyper-parameter optimisation - FID successfully quantifies the interpretabil-
ity of generated examples. C

1

, C
2

and C

3

represent the best, median and worst
hyper-parameter configurations (from FID), respectively.
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(b) Qualitative analysis of explanations - We use AM to maximise
and minimise the response of the output layer neuron resulting in
vocal and non-vocal examples, respectively.
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