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Overview

e We use a Generative Adversarial Network (GAN) to generate realis-
tic explanations using Activation-Maximisation (AM) [1]. We validate
our method on a vocal classifier, showing it can retrieve the concept of
singing voice presence encoded in the output layer neuron.

e We also propose Fréchet Inception Distance (FID) [2] as a quantitative
measure for estimating the interpretability of a set of generated examples.
We demonstrate the effectiveness of FID 1n automatically evaluating the
interpretability of a set of generated explanations.
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GAN-based Activation Maximisation

e AM synthesizes examples (e.g., images) that maximally activate different
components (neurons, layers) of a deep neural network (DNN).

e To generate visually interpretable examples, AM uses regularisers that
restrict the search space to realistic examples.
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e Our method uses a GAN as a regulariser that imposes a strong prior. The
method optimises

2 = arg max fo(fu(fy(2))) + Alogp.(2). (1)

—fs  R" — R? represents a generator that maps a noise vector z € R”
drawn from a known noise distribution p, to a generated example

r € R

— f,(x) € RM represents activations of all M neurons in a neural network
classifier f,

— f. : RM — R represents classifier response

— A > 0 controls the trade-off between AM and the realism of the gener-
ated examples
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Quantitative Selection of Explanations

e Present methods for selecting optimal AM hyper-parameters rely on vi-
sual interpretability of generated examples [3], but this 1s time-intensive
and does not scale well.

e We propose Fréchet Inception Distance (FID) as a metric for efficiently
evaluating the interpretability of a set of generated explanations.
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Classifier response f,(-)

e We posit that good interpretability requires the generated examples to
have a similar distribution of classifier responses f,(-) as the N samples
with the highest response from the dataset (p,.).

e We select hyper-parameters that minimise FID between the dataset and
the generated response distributions.
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Experiments

e Classifier- State-of-the-art audio classification model that classifies a
time-frequency representation of an audio excerpt to the “vocal” or “non-
vocal” class. The model 1s an S-layer deep variant of VGG-Net with a
single sigmoidal neuron in the output layer.

e GAN training

— Generator noise distribution p,(z)

N (z|0,;1,), where n = 128
— Generator and discriminator architectures are variants of DCGAN

e AM optimisation

—Learning rate [, € {0.1,0.01,0.001}, prior weight A €&
{0.1,0.01, 0.001}, number of iterations N; € {100, 500, 1000}, number

of examples per hyper-parameter configuration /N = 50
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Results
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(a) Hyper-parameter optimisation - FID successfully quantifies the interpretabil- (b) Qualitative analysis of explanations - We use AM to maximise
ity of generated examples. C, (5 and C'5 represent the best, median and worst and minimise the response of the output layer neuron resulting in

hyper-parameter configurations (from FID), respectively.

vocal and non-vocal examples, respectively.
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